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KEY TO ACRONYMS 

AGE: advanced glycation end products 

AM: Alveolar macrophages 

BALF: Bronchoalveolar lavage fluid 

B-MSCs:mesenchymal stem cells  

B-HSCs: hematopoietic stem cells 

DCs: Dendritic cells  

ECM: Extracellular matrix 

EDA: fibronectin isoform extra type III domain A 

FPF: familial pulmonary fibrosis 

HDAC: histone deacetylases 

NF-κB: Nuclear Factor Kappa B 

Nk: Natural killer  

PBLs: Peripheral blood leukocytes 

ROS: Reactive Oxygen Species 

SA- ß-gal: senescence-associated ß-galactosidase 

SIRT-1: Sirtuin-1 

SMP30: Senescence marker protein 30 

TL: Telomere lenght 
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RAGE: receptor for advanced glycation end products 

TLR: toll-like receptor  
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ABSTRACT 
 
Aging is a natural process characterized by progressive functional impairment 

and reduced capacity to respond appropriately to environmental stimuli and 

injury. The incidence of two common chronic respiratory diseases (chronic 

obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis 

(IPF)) increases with advanced age. It is plausible, therefore, that abnormal 

regulation of the mechanisms of normal aging may contribute to the 

pathobiology of both COPD and IPF. This review discusses the available 

evidence supporting a number of aging mechanisms, including oxidative 

stress, telomere length regulation, cellular and immunosenescense, as well as 

changes in a number of anti-aging molecules and the extra-cellular matrix are 

abnormal in COPD and/or IPF. A better understanding of these abnormalities 

may help the design of novel and better therapeutic interventions for these 

patients. 

 

Abstract word count: 126 words 
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INTRODUCTION 

Aging is a natural process characterized by progressive functional impairment 

and reduced capacity to respond appropriately to environmental stimuli and 

injury (1). As any other organ, the lungs also age. Physiological lung aging is 

associated with several anatomic (enlargement of alveoli without alveolar wall 

destruction, reduced surface area for gas exchange and loss of alveolar 

attachments supporting peripheral airways, often referred to as "senile 

emphysema") and functional changes (reduced elastic recoil and increased gas 

trapping) (2), that result in a progressive decrease of expiratory flow rates with 

age in otherwise healthy people (3). 

 

On the other hand, epidemiological studies indicate that aging is associated 

with an increased incidence of a variety of chronic diseases, including 

atherosclerosis, type2 diabetes mellitus, osteoporosis, cancer, auto-immunity 

and neurological diseases. The lungs are no exception since the incidence of 

two common chronic respiratory diseases (chronic obstructive pulmonary 

disease (COPD) and idiopathic pulmonary fibrosis (IPF)) also increase with age 

(4-6). Interestingly, although COPD and IPF are distinct disease entities, they 

share some similarities. Both occur later in life(4, 5), both are punctuated by 

episodes of “exacerbations” that are often of unclear origin(7, 8), and both are 

characterized by enhanced deposition of collagen and fibrosis (although, 

admittedly, this occurs in different locations in each disease, in the small 

airways in patients with COPD, and in the lung parenchyma in IPF). Finally, 

interestingly, both conditions can coexist in the same patient (9). It is 
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plausible, therefore, that abnormal regulation of the mechanisms of normal 

aging may contribute to the pathobiology of both COPD and IPF (10). 

 

The cellular and molecular mechanisms of physiological aging are still not 

well understood (11). Oxidative stress, telomere length regulation, cellular 

and immunosenescense, as well as changes in a number of anti-aging 

molecules and in the extra-cellular matrix are thought to be key mechanisms 

(11). This review discusses the available evidence that these mechanisms 

are abnormal in COPD and/or IPF (Table 1) and can therefore contribute to 

the pathogenesis of both diseases.  

 

OXIDATIVE STRESS 

The term “oxidative stress” refers to molecular, cellular and tissue changes 

induced by the accumulation oxidative damage which, in turn, may be the end-

result of the excessive production of reactive oxygen species (ROS) and/or 

defective antioxidant responses. The respiratory chain in the mitochondria is an 

important endogenous source of ROS, whereas cigarette smoke is an important 

source of exogenous oxidants.  

 

Oxidative stress is believed to play a key role in aging (12) since oxidative 

changes provide mechanistic switches to control protein conformation, catalytic 

activity, protein-protein interactions, protein-DNA interactions, and protein 

trafficking. Other signaling mechanisms can be altered by oxidative stress 
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including the induction of nuclear factor kappa B (NF-κB)and Smad3, 

transcription factors also known for their ability to promote changes in the 

expression of matrix proteins by increasing collagen deposition. 

 

Patients with COPD have evidence of oxidative stress in the lungs, blood (13) 

and skeletal muscle, where mitochondrial dysfunction resulting in the excessive 

production of ROS and oxidative damage to mitochondrial DNA (14, 15) have 

been described. Importantly, oxidative stress is considered to be a key 

mechanism in many of the pathogenic processes in COPD (16). Likewise, 

patients with IPF also have increased markers of oxidative stress both locally in 

the lungs and systemically (17). In particular, they have evidence of an altered 

glutathione redox system with deletion of reduced glutathione in the alveolar 

lining fluid (18).  

 

Jones et al. proposed that the traditional view that oxidative stress is a global 

imbalance of pro-oxidants and anti-oxidants is inadequate and conceptually 

limiting (19). The new concept is that oxidative stress cannot be defined by a 

single, global balance because multiple, independently regulated, thiol/disulfide 

control systems exist (19). So, in the absence of deficiency, shifting the pro-

oxidant/antioxidant balance by providing more antioxidants provides little 

increased protection against disease processes associated with aging. This can 

explain why numerous interventional trials with antioxidants have been 

inconsistent and inconclusive(19). Anti-oxidant therapy remains controversial in 

the management of COPD and IPF. 
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TELOMERE LENGTH REGULATION 

Telomeres are regions at the ends of chromosomes containing 1-5kb of 

(TTAGGG) repeats which protects DNA against degradation and recombination, 

thus supporting chromosomal stability (20). In most somatic cells telomeres 

shorten with every cell cycle because of the difficulty in priming DNA synthesis 

by DNA polymerase in this region. Telomere length therefore reflects the length 

at birth and its rate of attrition thereafter. The latter is as a result of replication 

history, but also a reflection of a number of factors, such as cumulative 

oxidative stress and chronic inflammation (21), acting on progenitor cells (see 

below). Abnormalities in TL have been described both in COPD and IPF.  

 

In circulating leukocytes, current and former smokers had shorter telomeres 

than did age-matched nonsmokers (22), there is a dose-dependent relationship 

between TL and the years smoked (23) and TL in COPD patients is shorter than 

that of control subjects in any age range (24). Other studies have shown shorter 

telomeres in the lungs of COPD patients, particularly those with emphysema 

(25, 26). Experimental animals with shorter telomeres in their lung cells have an 

increased susceptibility to cigarette smoke-induced emphysema (27). 

 

In patients with IPF, short telomeres in lung epithelial cells and peripheral blood 

cells have also been identified(28, 29). Interestingly,10% of patients with 

familial pulmonary fibrosis (FPF) have mutations of one of the two key factors 
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involved in telomere lengthening: the reverse transcriptase component (TERT) 

and the RNA template component (TERC)(30). In addition, around 20% of 

patients with dyskeratosis congenita, a genetic disease caused by telomerase 

mutations, develop pulmonary fibrosis (31). 

  

CELLULAR SENESCENCE 

When TL reaches a critical value, a “DNA damage response” is activated, 

leading to cell-cycle arrest (senescence) and, eventually, apoptosis. Cell 

senescence is, therefore, the cellular equivalent of aging. A number of cellular 

and molecular mechanisms are associated with cell senescence, including: (a) 

persistence of active metabolism, loss of proliferative activity and resistance to 

apoptosis; (b)accumulation of DNA damage, impairment of DNA repair, 

epigenetic modifications of nuclear DNA and attrition of telomeres; and, 

(c)protein, nucleic acids and lipids damage from oxidative stress(32, 33). As a 

result, senescent cells enter an irreversible growth arrest, exhibit flattened and 

enlarged morphology and expresses a different set of genes, including the cell 

cycle control kinase inhibitors p53, p21 and p16(34). Cellular senescence and 

cell arrest can occur by intrinsic and extrinsic mechanisms. The former relate to 

the exhaustion of a predetermined proliferative capacity with erosion of 

telomeres (replicative senescence); the latter to the effect of external stresses, 

such as oxidative stress (stress-induced premature senescence).Cell 

senescence has been identified both in COPD and IPF. 
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In vitro exposure of human epithelial cells to cigarette smoke, the major 

etiological factor in COPD, results in changes in cell morphology indicative of 

cellular senescence, such as increased expression of senescence-associated 

ß-galactosidase (SA- ß-gal) and elevated p21 CIP1/WAP1/sdi1protein (35).Similar 

increased expression of markers of cellular senescence were found in Type II 

alveolar epithelial cells in the lungs of mice exposed for three weeks to cigarette 

smoke associated with the accumulation of lipofuscin, indicating that stress-

induced premature senescence had occurred (35).Likewise, increased markers 

of cellular senescence are also present in emphysematous lungs. For instance, 

the expression of the senescent associated markers p16INK4a and 

p21CIP1/WAP1/sdi1 are higher in Type II alveolar epithelial cells in the lungs of 

patients with emphysema than in control smokers and non-smokers(36). 

Cellular senescence can contribute to the pathogenesis of COPD through at 

least two, non-mutually exclusive, mechanisms. First, increased epithelial and 

endothelial cell apoptosis occurs in emphysematous lungs (37, 38). This is 

thought to results in loss of cells in the alveolar walls and, consequently, in 

emphysema. Compensatory mechanisms involving cell proliferation should 

occur to abrogate the loss of alveolar cell loss (lung maintenance program) (39). 

Yet, when cellular senescence occurs, cellular proliferation is lost and the 

balance is tipped towards apoptosis and the resulting formation of 

emphysematous lesions. Fibroblasts from lungs with moderate to severe 

emphysema also show increased SA-ß-gal (25)and reduced proliferation rates, 

which may affect such a lung maintenance program. Second, recent evidence 

suggests there is a close relationship between cellular senescence and 

inflammation. Senescent cells demonstrate activation of NFκB, a major 

Page 11 of 41



transcription factor in the regulation of inflammation. Senescent cells also 

release increased amounts of various inflammatory cytokines resulting in 

enhanced inflammation (40).These pro-inflammatory mechanisms associated 

with senescence have also been demonstrated in human lung tissue, where the 

expression of phosphorylated IkB and TNFα were found to be increased in 

p16INK4a-positive Type II alveolar epithelial cells, suggesting that senescent 

alveolar cells promote inflammation at the cellular level. Further, there is also a 

relationship between the degree of p16INK4a -positive cell senescence and 

severity of inflammation in emphysema (41). Direct evidence supporting the 

association between telomere dysfunction, senescence and inflammation in 

lung tissue was also provided from telomerase deficient mice which exhibit 

shorter telomeres in lung cells and demonstrate increased lung tissue levels of 

pro-inflammatory mediators (41). This enhanced inflammation can increase 

protease release from cells and facilitate the development of a 

protease/antiprotease imbalance, which may in turn cause pulmonary 

emphysema to progress. Thus abnormal regulation of a number of mechanisms 

involved in normal aging is relevant to the pathogenesis of emphysema (Figure 

1). 

 

Abnormalities in cellular senescence have also been demonstrated in patients 

with IPF, particularly in bone marrow-derived stem cells. These cells can be 

divided in two groups: (a) hematopoietic stem cells (B-HSCs); and, (b) 

mesenchymal stem cells (B-MSCs). Both have been implicated in the 

pathogenesis of IPF. Fibrocytes are a subgroup of adherent B-HSCs that 

express stem and leukocyte cell markers like CD45 and CD34 and produce 
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type I collagen (42, 43). They have been shown to traffic to the lungs in 

response to CXCL12 and to contribute to the pathogenesis of IPF (44, 45). 

Furthermore, high levels of circulating fibrocytes have been shown to herald 

poor prognosis in IPF (46). Interestingly, aging mice are also characterized by a 

senescence-related increase in fibrocyte (and a parallel decrease of B-MSC) 

mobilization, higher serum levels of CXCL12 and increased concentration of 

TGF-βin the lungs (47).  

 

On the other hand, B-MSCs are characterized by a quiescent state with low 

metabolic activity and are primarily in the G0 phase of the cell cycle(48). This 

quiescent state is maintained by both extrinsic and intrinsic mechanisms and 

has been postulated to be a way of preserving their long-term proliferative 

potential and genomic integrity. Conversely, DNA damage checkpoints and 

several repair pathways are cell cycle dependent, and the quiescent state of B-

MSCs can underlie the propensity of these cells to accumulate DNA damage 

during aging, ultimately leading to a rapid stem cell depletion or exhaustion 

(Figure 2). Several studies indicate that B-MSCs can migrate and participate in 

lung repair by modulation of inflammation (49-51), but both physiological aging 

and pathologic senescence can alter these effects. For instance, administration 

of stem cells from young, but not from old mice, was reported to restore 

pathways critical for cardiac angiogenesis in senescent mice without prior bone 

marrow suppression (52-54). In a remarkable study, Conboy and coworkers 

demonstrated that hetero-chronic-parabiotic mice (two mice, one old and one 

young, surgically joined with shared circulatory systems) restored age-related 

loss of stem cell capacity in blood and liver of the older member of the pair(55). 
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Interestingly, senescent B-MSC increase the susceptibility to the development 

of fibrosis because of abnormal repair responses triggered in subjects exposed 

to tobacco, asbestos, and other agents known to stimulate DNA damage (56).  

 

ANTI-AGING MOLECULES 

Several anti-aging molecules influence the aging process and may therefore 

have relevance to the pathogenesis of COPD and IPF. Senescence marker 

protein 30 (SMP30), which is expressed in the liver and kidneys, increases in 

early life and decreases progressively with age. SMP30 knockout mice have 

increased alveolar cell apoptosis and enlargement of the alveoli indicative of 

emphysema (57). Consistent with the role of oxidative stress in aging, the lungs 

of SMP30-/-mice show age-dependent increases in protein carbonylation (a 

marker of oxidative stress). Furthermore, chronic exposure of SMP-/- to 

cigarette smoke results in a greater degree of emphysema compared with SMP 

Wild-type mice, suggesting that aging in this model directly enhances the lung 

injury produced by cigarette smoke (58). 

 

The klotho gene encodes a membrane protein that is a regulator of oxidative 

stress and cell senescence. Mice with a defect in the klotho gene have a short 

lifespan and develop a syndrome resembling aging with atherosclerosis skin 

atrophy, osteoporosis and emphysema (59). The development of emphysema 

in mice with a defect in the klotho gene is associated with activation of MMP-9 

in the lungs which has also been implicated in smoking-induced emphysema 

(60).The role of the klotho protein in COPD has not yet been determined. 
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Metabolic nicotinamide adenine nucleotide (NAD)-dependent histone/protein 

deacetylases (sirtuins) play an important role in a variety of processes including 

stress resistance, metabolism, apoptosis, senescence, differentiation and aging. 

Sirtuins are Type III histone deacetylases (HDAC) and act on histone residues 

in DNA thereby mediating gene silencing. Sirtuin-1 (SIRT-1) is essential for 

maintaining silent chromatin via the deacetylation of histones, but in addition 

regulates NFκB-dependent transcription and cell survival in response to TNFα 

(61). Environmental stress, such as cigarette smoke exposure, decreases 

SIRT-1 levels in both macrophages in vitro and rat lungs in vivo associated with 

increased inflammatory cytokine expression (62). SIRT-1 has recently been 

shown to be reduced in lung cells from COPD patients as a result of post-

translational oxidative modification of the molecule by cigarette smoke-derived 

oxidants, leading to increased acetylation and enhanced inflammatory 

responses to cigarette smoke (63).Thus SIRT-1 may have an important role in 

the regulation of inflammation in COPD as well as being involved in aging. 

 

In addition to sirtuins, histone deacetylase 2 (HDAC2orType I HDAC) have 

been reported to be anti-aging molecules. Knockdown of HDAC2 induces 

cellular senescence by enhancing p53-depending trans-repression and trans-

activation in target genes (64). HDAC2 has been shown to be reduced in the 

lungs of COPD patients compared to smokers who have not developed the 

disease (65) as a result of oxidative modification of the HDAC molecule (66, 

67). Down-regulation of HDAC2 results in acetylation of histone residues, 
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unwinding of DNA and access of transcription factors such as NFκB to the 

transcriptional machinery resulting in transcription of pro-inflammatory genes. 

Histone modifications are also implicated in cell senescence. Prior to 

senescence, cells exhibit an increase in p21Cip1/WAF1 which decreases when the 

cells reach senescence whilst expression of p16INK4a increases and this is 

thought to be responsible for the final, irreversible failure of proliferation. It has 

been shown that endothelial and alveolar type II epithelial cells in the lungs of 

emphysematous patients have increased expression of p16INK4a and 

p21Cip1/WAF1(41).The expression of p16INK4a and p21Cip1/WAF1 is partially 

controlled through histone acetylation within the promoter regions. This 

suggests a role for HDAC inhibition in senescence by controlling both p16INK4a 

and p21Cip1/WAF1. 

 

Finally, aging is also associated with the accumulation of advanced glycation 

end products (AGE), formed by non-enzymatic glycation and oxidation of 

proteins (68). AGE-formation changes the chemical and biological properties of 

proteins inside and outside of the cell. Binding to specific cell surface receptors 

induces activation of cellular signaling pathways leading to cellular dysfunction 

and cell death (69). The receptor for advanced glycation end products (RAGE) 

is a multi-ligand signal transduction receptor that can initiate and perpetuate 

inflammation. Its soluble isoform (sRAGE) acts as a decoy receptor for RAGE 

ligands, and is thought to afford protection against inflammation. sRAGE has 

been shown to be  significantly lower in COPD patients  than in controls  and 

correlates with the severity of emphysema as measured by CT scanning (70). 

Similarly, AGE-modified proteins such asN-(carboxymethyl)lysine (CML), which 
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is abundantly present in the fibrotic lung tissue, have been implicated in the 

development of IPF (71). Also, accumulation of AGEs is found in alveolar 

macrophages of patients with IPF (72).  

 

IMMUNOSENESCENSE 

Immunosenescense is the term used to describe the natural alterations in the 

immune system with aging(73). There are two main clinical manifestations of 

immunosenescense:(a) impaired ability to fight infections and to respond to 

vaccinations in elderly individuals; and, (b) increased incidence of autoimmune 

diseases with age (74). Immunosenescense affect both the innate and acquired 

immune response. Accelerated immunosenescense occur both in COPD and 

IPF (Table 1). 

 

Innate immune response and aging 

Age related changes of the innate immune response involve both gain and loss 

of function in different cell types (75, 76). In general, the former are 

characterized by the presence of a persistent, low-grade pro-inflammatory 

environment, as shown by elevated levels of IL-6, TNF-α and acute phase 

reactants (inflammaging) (77), whereas the latter includes decreased 

functionality of specific innate immune effectors (75). Specific changes in the 

innate immune response with age include:(a) clonal expansion of myeloid 

progenitors at the expense of lymphoid progenitors (75). Circulating neutrophil 

levels do not increase with age, but neutrophil activity is altered, as shown by 
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impaired killing capacity, slower chemotaxis, and enhanced production of ROS 

(“respiratory burst”) (78, 79);(b) circulating monocytes increase with age but 

their function decreases, partially due to toll-like receptor (TLR) deficient 

signaling (80, 81). Likewise, some reports indicate that macrophage function 

decrease with age, as shown by a reduced ability to produce cytokines ex-vivo 

in response to Candida antigens (82). Yet, others describe an enhanced 

production of ROS and bactericidal macrophage activity in aged mice(83). Thus 

it is conceivable that functional macrophage defects ex vivo can be restored in a 

pro-inflammatory milieu (84);(c) Dendritic cells (DCs) change their phenotype 

diversity and function with age, and their capacity to migrate to sites of infection 

and capture antigen is also reduced with aging (85). By contrast, their basal 

intracellular production of pro-inflammatory cytokines increases (86); and, (d) 

Natural killer (Nk) cells numbers increased with age due to the expansion of  

highly differentiated Nk cells (CD56 (dim) CD57+) with decreased proliferation 

and cytotoxicity capacity. These Nk cells have a lower ability to combat viral 

infections (74, 75, 79, 83) and may therefore contribute to morbidity and 

mortality in elderly individuals. Some of these changes appear to be amplified in 

patients with COPD and IPF(Table1)(87-90), including:(a) increased levels of 

neutrophils (91, 92); (b) increased numbers of monocytes and macrophages 

with modified pro-inflammatory cytokine production (92, 93); (c) altered DCs 

phenotype (94); and, (d) less active peripheral blood Nk cells in COPD (95). 

 

Acquired immune response and aging 

The acquired immune response also changes with age, including a reduction in 

the production of lymphocytes by primary lymphoid organs and modifications 
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lymphoid cell diversity and functionality (74, 96): (a) the thymus, where T cells 

develop, involutes with age. As a consequence, naïve T cells are reduced in 

blood and peripheral tissues of elderly individuals (97). By contrast, there is an 

expansion of memory cells, mostly highly differentiated CD8+ CD28 null cells, 

CD4+ cells and regulatory T cells. The final result is a T cell repertoire skewed 

toward previously encountered antigens (74, 75, 79) with less ability to respond 

to new infections; and, (b) B cell lymphopoiesis in the bone marrow declines in 

elderly subjects (98). Compared with B cells from younger individuals, antigens 

produced by B cells in aged humans exhibit decreased affinity for antigens and 

have an impaired ability to undergo class-switch recombination (99). Both 

changes modify the humoral immune response of the elderly. COPD and IPF 

patients share the following abnormal acquired immune responses (Table1): (a) 

a senescent T cell phenotype and a repertoire contraction (100, 101); and, (b) B 

memory cells are more frequent and have differential class switch 

recombination in COPD patients than in healthy individuals (102). 

 

EXTRACELLULAR MATRIX (ECM) CHANGES INDUCED BY AGING 

Collagen and elastin are the main proteins in the ECM that make up the 

framework of the alveolar structure, and are most important in determining the 

mechanical properties of lung parenchyma. In the lung, collagen represents 15 

to 20% of the total dry weight of the pulmonary tissue; type I and III collagens 

(COL I to COL III, respectively) are the most representative of these, 

representing 90% of the total collagen. Another protein, fibronectin, forms fibrils 

associated with other matrix components and it has been implicated in cell 
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adhesion, migration, epithelial-mesenchymal transition (EMT), phagocytosis, 

and cell growth.  

 

The composition of the ECM changes during aging (103) and contributes to the 

physiological decline of lung function with age (3, 6). Yet, it is unclear how age-

dependent changes in ECM components affect lung repair. Fibronectin 

expression increases in clinical and experimental models of fibrosis. In injured 

lungs, during the early phase of active repair, fibronectin production increases 

dramatically, and this increase occurs at the same time as fibroblast 

proliferation, thereafter responsible for excessive synthesis and deposition of 

the collagen protein. Alterations in cell–fibronectin interactions may contribute to 

abnormal tissue remodeling by stimulating the proliferation of fibroblasts, 

myofibroblast differentiation, and EMT and by facilitating the deposition of other 

matrix components such as collagens. Fibronectin undergoes alternative 

splicing at each of the three fibronectin exons. Lungs from aging rats show a 

significant increase of the fibronectin isoform extra type III domain A (EDA). 

Growth factors are implicated in the regulation of fibronectin splicing; 

specifically, TGFβ1 up-regulatesfibronectin EDA expression. Fibronectin EDA is 

considered necessary for TGFβ1-induced myofibroblast differentiation. 

Furthermore, there is a higher proportion of fibronectin EDA protein in IPF 

patients when compared with controls, and lack of fibronectin EDA is protective 

against bleomycin-induced lung fibrosis in mice. Thus it is reasonable to 

propose that excessive expression, of fibronectin EDA, associated with age, in 

lung might promote fibrogenic responses in the setting of lung injury. Taken 

together, these observations indicate that aging leads to changes in the 
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expression of TGF-β and extracellular matrix composition. These changes are 

unique to the lung parenchyma and do not have a similar effect on the airways. 

Hence, their relevance for the pathogenesis of COPD is unclear but they can 

clearly contribute to explain, at least in part, the increased incidence of 

interstitial fibrotic lung disorders in elderly populations.  

 

CONCLUSIONS 

Many of the different cellular and molecular mechanisms of aging appear 

abnormal both in COPD and IPF. The reason why similar abnormalities of the 

ageing process result in different phenotypes (ie: IPF and COPD) is a key 

question to which currently there is no answer. With the current knowledge we 

can only speculate that as the ethiological factors driving these two diseases 

(mainly epithelial injury and others still unknown for IPF, and smoking for 

COPD) are different, they result in the mechanism of normal ageing being 

altered differently, in different sites or with different repair mechanisms/capacity. 

As a corollary, we propose that the ageing process is abnormal rather than 

accelerated in these patients, since these two diseases appear to be the result 

of defective and/or exhausted mechanisms of repair rather than their shift 

(accelerated aging) with early accumulations of these defects. In any case, a 

better understanding of these abnormalities may help designing novel and 

better therapeutic alternatives for patients suffering these devastating diseases. 
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FIGURE LEGENDS 

Figure 1.Regulation of senescence and the development of emphysema. 

Oxidative stress generated exogenously from cigarette smoke or endogenously 

from Mitochondria or inflammatory cells leads to stress-induced premature 

sencesence. Aging itself results in increase inflammation which results in 

increased cell turnover and hence increased replicative sensecence. Cellular 

senescence in COPD is also influenced by changes in insulin signalling and by 

decrease in antiaging molecules such as sirtuins. Cellular senescence results in 

reduced cellular proliferation, which together with increased proteolytic activity 

results in alveolar cell destruction and emphysema. For further explanations, 

see text. 

 

Figure 2. Schematic representation of the mechanisms by which aged B-MSCs 

(mesenchymal stem cells) increase the susceptibility to the development of 

fibrosis due to senescence and exhaustion of the stem cells.  This hypothesis is 

supported by the observation that aging B-MSCs, accumulate damage in their 

DNA, have a decrease on their response to soluble factors, resulting in a 

decrease on their ability to repair damaged organs. These observations are 

providing novel mechanisms to account for the higher incidence of chronic 

fibrosing lung disorders in subjects exposed to tobacco, asbestos, and other 

agents known to stimulate DNA damage. 
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Table 1.Mechanisms of aging that can participate in the pathogenesis COPD and IPF. For further explanations, see text. 

 

Mechanism Aging COPD IPF 

Oxidative stress Neutrophils, macrophages and 
monocytes show enhanced ROS 
production (78, 79).  

Telomere shortening is enhanced by 
oxidative stress (21, 104). 

Increased oxidative stress in the lungs 
promoting inflammation (14-16, 105). 

Increased oxidative stress in the lungs 
related to injury and fibrogenesis (17, 18). 

Telomere Length (TL) Decreased TL in peripheral blood 
leukocytes (PBLs) ( 106). 

 

TL is smoking dose dependent. TL is 
shorter in PBLs in COPD and in 
emphysema (24, 104, 107). 

 

Telomerase mutations are found in 

familiar pulmonary fibrosis (FPF) and 
sporadic IPF. (29, 30, 108). 

Tissue specific cellular 
senescence 

Induced when a critical telomere length is 
reached (109).  

Elevated SA-ß-gal, p21
 CIP1/WAP1/sdi1

and 
pro-inflammatory cytokine production in 
lung parenchyma and type II alveolar 
cells (26, 34).  

 

Senescent Bone 
marrow-derived MSCs 
stem cells 

  Senescent B-MSCs and Fibrocytes 
increase the susceptibility to IPF due to 
abnormal lung repair (43, 44, 110, 111). 

Anti aging molecules The expression of Klotho in CD4+ 
lymphocytes decreases with age (112). 

Knock-out mice models of SMP30 and 
Klotho develop accelerated aging and 
emphysema (57).  

Decreased levels of SIRT-1, HDAC2 are 
found in the lung of COPD patients (65). 

 

Advanced glycation end Accumulation and binding of AGEs to COPD patients have lower levels of AGE-modified proteins are possible 
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product (AGE) 
accumulation 

their receptor initiates cellular signals 
promotepro-inflammatory cytokines (113). 

circulating AGEs correlating with the 
presence of emphysema (70). 

pathogenic factors implicated in IPF, 
found in Alveolar Macrophages of 
patients (114). 

Inflammatory cytokines  Persistent low level inflammation: IL-6, 

TNF-α and acute phase reactants (77). 

Systemic and pulmonary increased levels 
of IL-6, TNF-a & CRP (87, 88). 

Mild inflammation with IL-8, IL-6, CCL2 
(89, 90). 

Neutrophils  Unchanged numbers & impaired killing 
(78).  

Increased in BALF and lung parenchyma 
(115). 

Mild increase in BALF (92). 

Macrophages/Monocytes Deficient TLR signaling, less production 
of pro-inflammatory cytokines (79-81). 

Increased in airways and lung 
parenchyma & production of pro-
inflammatory cytokines (115).  

Mild increase in BALF (92). Higher 
production of CCL18, IL8, CCL2, S100A9 
and MIF (93). 

NK cells Increased numbers of highly 
differentiated NK cellsless active (74, 75, 
79, 83).  

Peripheral blood NK cells are less active 
and have less phagocytic activity (95). 

 

DCs Change phenotype, increase the levels of 
pro-inflammatory cytokines (85, 86). 

More active in COPD (116).  

T Cells The proportion of memory cells with 
CD28null (senescent phenotype) 
increases and decreases the numbers of 
naïve T cells (97). 

Senescent T cell phenotype and 
repertoire contraction (100). Less ability 
to fight infections. 

Increased numbers of senescent T cell 
phenotype producing Th2 cytokines (101) 
considered pro-fibrotic. 

B Cells Decreased B cell production and 
impaired ability to Immunoglobulin class-
switch (99).  

B memory cells are more frequent in 
COPD patients, and have differential 
class switch recombination (91, 99). 

 

Extracellular matrix 
(ECM) changes 

 Alterations in ECM composition lead to 
abnormal tissue remodeling (3, 6). 

Alterations in ECM composition and TGF-

βlead to abnormal tissue remodeling (3, 
6). 
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